Radio Frequency Heating

Innovating Oil Extraction with Radio Frequency Heating

June 18, 2019
Forward Looking Statements & Advisory

Certain statements in this presentation include forward-looking information (as defined in Canadian securities legislation). These statements involve numerous assumptions about future economic conditions and courses of action, and are therefore subject to various risks and uncertainties. These risks and uncertainties include, but are not restricted to, the ability of Acceleware Ltd. (“Acceleware”, “AXE” or the “Corporation”) to fund its research and development (“R&D”) activities, the timing of such R&D, the likelihood that the patent applications filed by the Corporation will be granted, continued increased demand for the Corporation’s products, the Corporation’s ability to maintain its technological leadership in various fields, the future price and cost of producing heavy oil and bitumen, the availability of key components and the Corporation’s ability to attract and retain key employees and defend itself against any future patent infringement claims.

There can be no assurance that such statements will prove to be accurate. Actual results could differ materially from those anticipated in such statements. These and all subsequent written and oral forward-looking statements are based on the estimates and opinions of management on the dates they are made and expressly qualified in their entirety by this notice. The Corporation assumes no obligation to update forward-looking statements should circumstances, or management’s estimates or opinions, change except as required by law.
History of Acceleware

Acceleware founded 2004

Focus on software and seismic products 2007

RF studies with US super-major oil company 2010

AXE modular RF tank tests & patent filing 2015

Successful RF XL 1:20 scale field demo 2017

GE partnership announced, additional RF XL Patents filed 2016

Signed commercial-scale pilot agreement with Prosper Petroleum Ltd. 2018

Commercial-scale pilot ready 2019

Complete commercial-scale pilot deployment of multiple RF XL systems 2020

Commercial-scale pilot ready 2019

Signed commercial-scale pilot agreement with Prosper Petroleum Ltd. 2018

Successful RF XL 1:20 scale field demo 2017

GE partnership announced, additional RF XL Patents filed 2016

AXE modular RF tank tests & patent filing 2015

RF studies with US super-major oil company 2010

Focus on software and seismic products 2007

Acceleware founded 2004
RF Heating - History
Use of Electromagnetic Energy

• Has been explored as an EOR method since 1948
• Earliest field tests were in Russia in 1969

• Limitations have included:
 ➢ Electrically inefficient
 ➢ High frequency operation
 ➢ High cost of generators, power limitations
 ➢ Short horizontal (<500m) or vertical wellbore designs

Acceleware observed limitations of current EM technologies
RF Heating - 101
How does it work?

- Electromagnetic Energy applied
- Oil & rock are non-polar
- Connate water absorbs EM energy volumetrically

= In-situ Steam
RF XL – How it works

RF XL efficient delivery of energy to reservoir
RF XL - Ideal Reservoir

- Bitumen or Heavy Oil
- Thickness 10-25 m
- Water Saturation 10-35%
- Permeability > 3 Darcie
- Porosity > 25%
- Possible applications in carbonate reservoirs
- Testing ability to desiccate and crack thin shale layers

Photo of McMurray Oilsands
ref: (http://calindragoie.blogspot.com/2013/11/drilling-and-completion-technologies.html)
RF Heating vs. SAGD
RF XL Comparison

Similarities
• 1000m Hz section & well design
• Use of steam & gravity drainage methods

Differences
• SAGD - heating occurs primarily at interface
• RF process - heating occurs at interface and beyond
• Reduced losses & no superheating of steam = lower energy intensity
• SOR < 2.0 vs industry average of 2.5-3.5
RF XL - Testing and De-risking
RF XL - GE Converter Development
High-Power, High-Efficiency, Long-life power platform

Key advantage to RF XL

- Proprietary design & IP
- GE SiC transistors and power converter platform
- 2 MW maximum power per unit
- Stackable modular design
RF XL – Benefits vs. Current Recovery

- Lower CAPEX – no steam generation or associated pipeline infrastructure
- Lower OPEX – lower chemical processing requirements
- Lower GHG’s (25% - 100%) \(^1\)
- No external water source
- No solvent required
Next Steps

• Execution of RF XL pilot
• Commercialization of RF XL
• Apply RF to improve bitumen by rail
• Apply photo voltaic solar or other renewable sources in heavy oil application
• Zero GHG heavy oil production
Antenna Designs

Dipole-Based RF System
- **Efficiency**: 80-85%
- **Energy Losses**: 15-20% at 500m depth
- **Well Length**: > 500m
- **Cost**: $5/m
- **Power**: Max 1 MW

RF XL System
- **Efficiency**: 98%
- **Energy Losses**: 5% at 500m depth
- **Well Length**: 500–1000+ m
- **Cost**: $1/m
- **Power**: Up to 6 MW

<table>
<thead>
<tr>
<th></th>
<th>Dipole Antenna Designs</th>
<th>RF XL Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>80-85%</td>
<td>98%</td>
</tr>
<tr>
<td>Well Length</td>
<td>> 500m</td>
<td>500–1000+ m</td>
</tr>
<tr>
<td>Cost</td>
<td>$5/m</td>
<td>$1/m</td>
</tr>
<tr>
<td>Power</td>
<td>Max 1 MW</td>
<td>Up to 6 MW</td>
</tr>
</tbody>
</table>
RF XL - Project Progress

- Prosper Petroleum agreement signed for test site
- AER application submitted
- GE Global Research RF converter development
- Scovan Engineering Surface Facilities design completed
- Drilling & Completion design in final stages
- Internal simulations and de-risking tests ongoing